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CHAPTER 1

INTRODUCTION

Small time-delays are usually expected to occur in systems due

to several reasons, among which are the effect of mass and/or energy

transport and the finite measuring time of the system outputs. These

delays are very often neglected. However, they might cause significant

deviation from the nominal system trajectory. Optimal systems with a delay

have been studied by several authors. Chyung and Lee [2] obtained necessary

and sufficient conditions of optimality and dealt with the questions of

existence and uniqueness of the optimal control. Sannuti and Reddy [10]

dealt with the problem by constructing an asymptotic power series solution

in terms of time delay. That asymptotic approximation procedure was aimed

at improving a 'nominal design' in which the small time delay is neglected.

Mee [8] proposed a design method which calculates optimal linear feedback

laws for the system, but ensures that the effect of control delays is kept

small in closed loop. Inoue and Akashi [1] presented a synthesis method of

a suboptimal control for a regulator problem, in which the optimal control

is expanded into MacLaurin series in terms of the delay time and the first

two or more terms are used to yield a suboptimal control. Kleinman [24]

investigated systems with observation noise and showed that the optimal

control for such systems can be generated by the cascade combination of a

Kalman filter and a least mean squared predictor.

In this thesis we are concerned with the design of optimal control

systems in a manner that makes their trajectories insensitive to small-time

delays. The design strategy proposed here is to augment a standard

quadratic performance index with a term of sensitivity measure. For deter-

ministic systems, the minimization process is carried out using the well-
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known Minimum Principle. This method was proposed by Stavroulakis and

Sarachik (3], and extended to Discrete-time Systems by Cruz and Sawan [19].

Subbayyan and Varthilingam (20] reconsidered the same problem apparently

without knowing about the work of Stavroulakis and Sarachik [3]. For

stochastic systems, the minimization process of the augmented performance

index is carried out by transforming the problem into an equivalent static

minimization problem [22]. To apply the above methods to our problem of

interest; sensitivity to small time-delays, we use the notation of a

sensitivity function introduced by Inoue, Akashi, Ogino and Sawaragi [1].

Several cases are considered in this thesis. The delay is

assumed to occur either in the plant (Chapters 3 and 5), or in the feedback

path (Chapters 4 and 6). Several system structures are discussed. For

each case, both stochastic and determiniltic systems are studied. The

proposed design strategy is applied to a practical example. The numerical

results are analyzed and encouraging conclusions are obtained.
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CHAPTER 2

PROBLEM FORMULATION AND METHODS OF ATTACK

2.1. Deterministic Systems

Systems considered in this thesis are of linear dynamics with

feedback control. We consider the cases of state feedback and output

feedback, as well as the case where state reconstruction is used. In the

latter case we may use a full-order observer to reconstruct all the

states, or a reduced-order observer to reconstruct the unmeasurable states

0) only. The state equation is of the form

x(t) = A x(t) + C u(t) (2.1)

with x(O) = x

where x(t) ERn, u(t) ERm and A and C are matrices of appropriate dimensions.

The output equation is

y(t) = E x(t) (2.2)

where y(t) ER2 and E is a matrix of appropriate dimensions. The observer

dynamic equation, if used is assumed to be of the form

z(t) = F z(t) + G y(t) (2.3)

with z(O) = z

k

where z(t) ER , k ! n and F and G are matrices of appropriate dimensions.

We may have a state feedback control of the form

u(t) = D x(t), (2.4)

an output feedback control of the form

u(t) D y(t), (2.5)
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or, if an observer is used, a feedback control of the form

u(t) = D z(t) + K y(t) (2.6)

where D and K are matrices of appropriate dimensions.

We will consider the different possibilities of occurrence of

a delay in the system. If a delay, u., is expected to occur in the

plant, the state equation will be of the form

x(t) = A x(t) + B x(t-p) + C u(t) (2.7)

with x(O) = x0

along with the control law (2.4), (2.5), or (2.6). If a delay, 6, is

expected to occur in the feedback path, it will appear in the control law

(2.4), (2.5), or (2.6) with the state equation (2.1) unchanged. If we

have all the states available, we will use a state feedback control of

the form

u(t) = D x(t-P) (2.8)

If we have an output feedback control, we will use a control law of the

form

u(t) = DEx(t-.) (2.9)

If an observer is used, one of the following control laws will be applied:

u(t) = D z(t-6) + K y(t) (2.10)

u(t) = D z(t) + KEx(t- L) (2.11)

It should be noted that the control law (2.10) is not as likely to be

expected as (2.11) since the observer is constructed on the control

side. The purpose of considering that case is to cover all the

possibilities of delay occurrence.
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The problem under consideration is to design a system with zero

time delay, which we will refer to as the nominal design, such that a

quadratic performance index is minimized and sensitivity to small time

delays is reduced. in other words, we require the trajectories of the system

with the occurrence of a small time delay, as described above, to be as close

as possible to the nominal trajectories, i.e. thos of the system when the time

delay is zero.

The standard linear regulator problem is to minimize a quadratic

performance index of the form:

J (x'Qx + u'Ru)dt (2.12)
0

where Qa0 and R>0 are matrices of appropriate dimensions, for 11=0 . But if

the actual system has some delay, due to some of the reasons discussed in

the Introduction, and we use the standard problem solution, then the actual

trajectories may be unacceptable compared to the nominal ones, obtained for

zero delays. Reducing this sensitivity to small time delays may be achieved

by trying to adjust Q and R in the standard linear regulator problem. For

example decreasing R will result in a larger control which usually yields

low sensitivity. However this approach is not convenient because it has no

direct theoretical basis and it does not have a direct handle on -he sensi-

tivity of the different trajectories. In other words there is no systematic

way to reduce the sensitivity of a particular trajectory of the system. All

that can be done is to keep trying some different values of Q and R and

observing the trajectories in each case to examine their sensitivity. In order

to have a direct handle on sensitivity, we ought to define some sensitivity

measure and incorporate it in the performance index to be minimized.



6

For our problem, sensitivity reduction can be achieved by defining

the trajectory sensitivity function [1] as being the first partial derivative

of the state vector with respect to the delay, evaluated at the nominal value

of the delay, i.e. zero. Using the notation introduced above, we write

t x(t,P) (2.13)

where a (t) ER n and x(0) = 0. To reduce the sensitivity with respect

to the delay, u, the sensitivity function, defined by (2.13, is included

in the performance index to be minimized with a suitable

weighting matrix, S 2 0, of appropriate dimensions. The augmented performance

index to be minimized is of the form

J Eil ('Qx+u'Ru+a1Sx)dt3 (2.14)

where E[') denotes the expected value over the initial condition x . This

averaging process is required to avoid the dependence of the necessary

conditions to be derived on the initial condition x o. Q,R and S are design

parameters to be adjusted to get a desirable behavior. It is noted that the

choice of S with specific weighting is reflected directly on the sensitivity

of the different state trajectories. This direct handle of S on sensitivity

will be investigated in the examples presented in Chapter 7. It is noted that

z (t), if an observer is used, is not introduced in the performance index,

J, because what we practically care for is the plant trajectory x(t).

Now we present a brief description of the minimization process

which will be carried out to derive the necessary conditions for J, given

by (2.14), to be minimal subject to a control law of one of the forms

described above. The procedure consists of the following steps:



7

1. Obtain the dynamic equation of the closed loop sensitivity functions

a (t) and a (t), in case of using an observer, by calculating the

first partial derivative of the state equation (2.1), (2.7) and (2.3)

after applying the proper control law. Then substitute with the

nominal value of the delay, i.e. zero, in all the equations.

2. Form the Hamiltonian, after applying the proper control law, as follows:

H x'Qx + u'Ru + a'S a + X + X a (2.15)
x

or, if an observer is used,

H x'Qx + u'Ru + a' S a + X x + a
x x x a x

x

+ x z + x (2.16),9z a z
z

x %' zand X are appropriate Lagrange multipliers and are
X. a z a

x z
assumed to have the following relations:

x  K1 1 x+K 1 2 ax (2.17a)

= (2.17b)
'a K2 1x + K2 2ax

or, if an observer is used,

S-KX + K2z + K3O K4 z
x 11 12 + 3x + 14 (2.18a)

z ' +  22z + + K4z(2.18b)

a x I x + 32z + K3 3 a x + K3 4 az (2.18c)

Kx + K z + K37 + K4a (2.18d)
a 41 K4 2 z+ 4 3 a1xK 4 4 zz

where Ki; i, j =l, 2, 3, 4 are constant matrices of appropriate

dimensions.
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3. Apply the minimum principle:

k - - (2.19ga)

x (2.19b)

26 -(2.19b)

x = - .R(21e
z xz

S . _(2.19d)

4. Equate x z X and X evaluated in (2.19a-d) to the corresponding
x'z a ax zvalues obtained by differentiating (2.18a-d) or (2.17a-b). Hence get

equations for Kij; i, j -1, 2, 3, 4. It will be seen that such

equations are linear algebraic of the Lyapunov form.

5. The optimal feedback gain matrices satisfy the following necessary

conditions:

o E( , dt) (2.20a)
0

0- E( dtl (2 .20b)
0

where E(' denotes the expected value over the initial condition x 0

It will be seen that, for given values of Ki3 , the necessary conditions

(2.20a-b) would generally result in linear equations of the form

N
D = Z UiDV I + P (2.21)

i-l

where Ui, Vi and P are matrices of proper dimensions, evaluated in

terms of Kij; i, j -1,2,3,4, and N is a nonnegative integer.

A numerical algorithm for solving equation (2.21) will be presented

* in section 2.3. It will also be seen that in the cases of the,
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delay occurrence in the plant, equation (2.21) will be as simple as

D - P (2.22)

Since P, Ui and Vi contain K..; i, j = 1,2,3,4 which, in turn,

depend on D, we use the following iterative algorithm to compute the

optimal D and K, in case of using an observer:

1. Start with an initial guess for D

2. Solve the Lyapunov-type equations to evaluate Ki; i,j =1,2,3,4.
ij~

3. Compute a new value of D from equation (2.22) or by solving

equation (2.21).

4. Compare the new value of D with the old one. If it is close enough,

stop. If it is not close enough, start a new iteration repeating

steps 2 and 3 using the new value of D.

2.2. Stochastic Systems

Analogous to the deterministic systems considered in section 2.1,

we will study linear dynamic systems with feedback controls, assuming

disturbance occurrence in both the state equation and the output equation.

The state equation in this case is

x(t) = A x(t) + C u(t) + wl(t) (2.23)

with x(O) -x

where x(t) ERn, u(t) ER , w1 (t) ER
n and A and C are matrices of appropriate

dimensions. The output equation is

y(t) - E x(t) + w2 (t) (2.24)

where y(t) ER , w2 (t) ER
i and E is a matrix of appropriate dimensions.

wl(t) and w2 (t) are uncorrelated zero mean white noise processes with

spectral density matrices Z1 and E2 respectively. If an observer is used,
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it is assumed to have the following dynamic equation

z(t) = (A+B)z(t) +Cu(t) +F(y(t) -Ez(t)) (2.25)

with

u(t) - Dz(t)

where z(t)ERn and F and D are matrices of appropriate dimensions. We may

use a state feedback control law of the form (2.4), an output feedback

control law of the form

u(t) = Dy(t)

- D E x(t)

Analogous to the study of deterministic systems, we will

consider the different possibilities of occurrence of a delay in the

system. If'a delay, u, is expected to occur in the plant, the state

equation will be of the form

x(t) - A x(t) + B x(t-U) + C u(t) +wl(t) (2.27)

with x(0) = x°

along with the control law (2.4), (2.25) or (2.26). If a delay, L, is

expected to occur in the feedback path, the state equation (2.23) will

remain unchanged along with one of the following control laws:

u(t) -Dx(t- .) (2.28)

or

u(t) - DE x(t-') (2.29)

If an observer is used, we assume

y(t) - Ex(t-P)+w2 (t) (2.30)

along with equation (2.25). The case of a delay in the reconstructed state

is also considered for the purpose of completeness. But it is not common
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as discussed in Section 2.1. So, we will also consider a control law of

the form

u(t) Dz(t-P) (2.31)

associated with the observer dynamics given by equation (2.25).

The standard linear regulator problem is to minimize a quadratic

performance index of the form

1 1 T
3= t lim Eff (x'Qx + u'Ru)dt} (2.32)

2 T-0

where E('} denotes the expected value and Q and R are matrices of

appropriate dimensions.

i! For our problem, low sensitivity can be achieved by incorporating

the sensitivity function defined in equation (2.13) in a performance index.

The augmented performance index to be minimized is of the form

4T
J 1 E IT(xtQx + u'Ru + a' So )dt (2.33)

T- I=  o x x

where S is a matrix of appropriate dimensions. As discussed in the above

section, we do not have to introduce a (t), if an observer is used, in
z

the performance index J.

Now, we present a brief description of the optimization procedure,

which we will carry out to derive the necessary conditions of the performance

index (2.33) to be minimized.

1. Derive the dynamic equation of the closed loop sensitivity functions

a (t) and a (t), in case of using an observer, by calculating the

first partial derivative of the state equation (2.23) or (2.27) and

(2.25), if an observer is used, after applying the proper control law.

Then substitute with the nomial value of the delay, i.e.,zero, in all

ofW t qa n N tt(t)
of the equations. Note that . . . .a2
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2. Form an augmented state vector

=~ (2.34)

or, if an observer is used,

x(t)

z(t)
X(t) (2.35)

a (t)x

a ZCt)

Hence, form A, Q and w(t) such that the problem is reformulated as

T 
,minimize J = r- E( xQxdt} (2.36)

T-  0

with

x Ax +w (2.37)

and define

Z Ef-Ww' (2.38)

It is shown [22) that equations (2.36) and (2.37) can be expressed

as an equivalent static minimization problem:

minimize J = tr[Q P) (2.39)

such that P is the solution of the equation

AP + PA' +E = 0 (2.40)

It is also proved [221 that a necessary condition for J, given by (2.39)-

(2.40), to be minimal is

0- --- trf1PK +-!Kf +- j(.1D 'D 2 2 QP} (2.4)

where
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A'K + KA + Q = 0 (2.42)

XP +P '+f 0 (2.43)

If an observer is used, one more equation of the form (2.41) will be

used to get the optimal value of F. Similar to what we got in

the deterministic case, we have to use an iterative algorithm to compute

the optimal feedback gains. That is because P and K, obtained by

solving (2.42) and (2.43), depend on D. Then they are used in (2.41)

to get D. The following algorithm will be used

1. Start with an initial guess for D.

2. Form A, Q and E and hence solve equations (2.42)-(2.43) to get P and K.

3. Solve equation (2.41) to obtain a new value of D.

4. Compare the new D with the old one. If it is close enough, stop.

If it is not close enough, start a new iteration repeating steps

2 and 3 using the new value of D.

2.3. Existence of a Solution

Let the necessary conditions be generally given by

f(D,S) - 0 (2.44)

It is known [2] that for S = 0, there exists D such that f(D ,0) - 0.

So, by the implicit functi6n theorem, there exist open sets UCR 
nxm nxn

and W CRn with (D ,0) EU and 0 EW such that to every S EW corresponds a

unique D* such that (D*,S) EU and f(D*,S) = 0. In other words there

exists D* which satisfies (2.44) for any S in the neighborhood of 0.

The algorithms presented in Sections 2.1 and 2.2 are similar to

the gain approximation algorithm which corresponds to the successive over

relaxation (SOR) algorithm for the Gauss-Seidel iteration. It is proved [22)

that the direction determined by that algorithm at the kth iteration is a
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downhill direction. Thus this algorithm is in fact a descent method. The

proofs for the cases considered in this thesis are similar to the proof

presented in [22]. Step number 2 of both algorithms is to solve

Lyapunov-type equations which can be done using the Riccatti package of

Linsys prepared by Bingulac (23]. Step number 3 of both algorithms is

to solve an equation of the form (2.21). Here we propose an algorithm to

solve that equation.

Consider the following iterative algorithm

N
Di+1  E j UjDV j + P (2.45)

with D = P

To prove convergence of that algorithm we let P = suPp(), p(Vj)J;

I,..., N where pj) and p V) are the spectral radii of U. and Vi.

respectively. The error in the ith iteration is defined as ei Di - Di+l,

and its norm is found [7] to satisfy the following inequality

i+l

le ill I (i+l) Y • (N2) i r (2.46)

where y and r are positive constants. If we assume that Np2 < 1, the right

hand side will go to zero as i - . So, the algorithm (2.45) converges

under the sufficient condition

p <.j (2.47)

2.4. Advantages of this Design Scheme

The problem considered in this thesis is an extension of the

standard Linear-Quadratic problem as described in sections 2.1 and 2.2.

Q, R and S, defined in equation (2.14), are design parameters to be adjusted

in order to get a desirable behavior. The matrix Q is responsible for the

______
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regulation of the states according to a desired weighting. The matrix R

is responsible for minimizing the control effort. The matrix S is

responsible for reducing trajectory sensitivity to a small time delay of

the system states according to a desired weighting. This design scheme is

reliable since it provides a guaranteed approach to reduce sensitivity

in general. The choice of S with a specific weighting is reflected

directly on the sensitivity of the different state trajectories. This

direct handle on sensitivity is the main advantage of this proposed design

scheme.

I,

I



CHAPTER 3

DETERMINISTIC SYSTEMS WITH A TIME DELAY IN THE PLANT

3.1. State Feedback Control

Referring to the general problem formulation stated in Section

2.1, we have, in this case, a state equation (2.7) along with a state

feedback control law (2.4) and a performance index (2.14).

The equations to be solved are summarized as follows:

K1 1A+A'KI = -Q+ K1 2BA +A'B'K 2 1  (3.1)

KI2A + A'K2 -AK'B'K2 (3.2)

K2 A +A'K2 1 i K2 2BA (3.3)

K22A +A'K 2 2 ' -S (3.4)

.M+ MK' = (3.5)

AG1 +GIA' =BAM (3.6)

AG2 +G 2A' -GjA'B' +BAG i  (3.7)

f

DR'c' (B'K2 1 -KI)M+ (B'K22 -K1 2 )GI

% -K G -K2G2 M-1
2(3.8)

where

A=A+B+CD (3.9)

-Q +D'RD (3.10)
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and

E EL~o~o ] (3.11z)

The above equations are obtained directly by applying the optimiza-

tion procedure described in Section 2.1. Here we present the main steps of

the derivation. For 4 = 0, we have [1]

x A X (3.12)

=Aa - BAX (3. 13)

and

j V(x'Qx + a'S 0) dt (3.14)
0

where A and Q are defined above. The Hamiltonian is given by

H 'Qx+ - 'Sa + X' Ax + X' Ea- X'BLX (3.15)
Q 2 x

- -(Qx+A'x -A'B' a) (3.16)

dH (Sa + A') (3.17)
a aa

X and X are related to X and a by the equations (2.17a-b). Hence we

obtain the equations for Kll, K12, K2 1 and K22 stated above. To apply the

necessary condition (2.20a) we evaluate the partial derivative of H with

respect to D.

L ._____



aH ,RDXX' +C'K1XX' +C'K aX' - C'B'K XX
021

- CBK 2 2 0X' + C, Y2Xa, + C'K22 a ' (3.18)

Hence we obtain the above equation for D along with the equations of M,

G and G2.

3.2. Output Feedback Control

'Referring to the general problem formulation stated in Section

2.1, we have, in this case, a state equation (2.7) along with a control

law (2.5) and a performance index (2.14).

The equations to be solved are summarized as follows:

K1 1A + A'K1 1 = -Q + K1 2BA + A'B'K21 (3.19)

K1 2A + A'K1 2 = AIBK 2 2  (3.20)

K A + A'-l = Y22B (3.21)

22 + K22 = -S (3.22)

K + ,= - (3.23)

AG + GA'= BAM (3.24)

AG2 + G2A' G A'B' + BAGi (3.25)

D - R'C' \ (B'K21 -KI1 )M+(B'K2 2 -K 2 )G1

-K2 1GI - K22G2 E'(ENE') (3.26)
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where

A = A+B+CDE (3.27)

Q= Q +E'D'RDE (3.28)

and

Z E[X0 X'} (3.29)

The above equations are obtained directly by applying the optimi-

zation procedure described in Section 2.1. Here we present the main steps

of the derivation. For ) = 0, we have

A = X (3.30)

Aa- BIX (3.31)

and

J = r(x Qx + a'Sj)dt (3.32)

where A and Q are defined above. The Hamiltonian is given by

H - 'QX + ''S A.+X A-+BAX (3.33)

We notice that H, as a function of A and Q, has the same form as that at

Section 3.1. Hence the equations for KIII K12 , K21 and K22 are of the

same form as those of Section 3.1. The partial derivative of H with

respect to D is then evaluated and the necessary condition (2.20a) gives

the above equation along with the definitions of M, GI and G2 .
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3.3. Use of Observers

Referring to the general problem formulation stated in Section

2.1, we have, in this case, a state equation (2.7), an output equation

(2.2) and an observer (2.3) along with a control law (2.6) and a perfor-

mance index (2.14).

The equations to be solved are sumarized as follows:

K 1 1A+A'K -Q-E'K'RKE -E'G'K2 1 +A'B'K 3 1 +K 13BA - K1 2GE (3.34)

K1 2F +A'KI2  -E'K'RD -E'G'K 22 +A'B'K32 +K1 3BCD -K1 1CD (3.35)

K1 3A+A'K1 3 -E'G'K2 3 +A'B'K3 3 -K1 4GE (3.36)

K14F +A'K 14 m -E'G'K4 +A'B'K34 - K 3CD (3.37)

K2 1A +F'K 2 1 , -D'RKE -D'C'K 1 1 +D'C'B'K 3 1 +K 2 3 BA -K 2 2GE (3.38)

2 2 F +F 2 2 -D'RD-D'C'K +D'C'B'K3 2  +K 2 BCD-K2 1 CD (3.39)

K2 3A +F'K2 3 -- D'C'K1 3 +D'C'B'K 3 3 -K2 4GE (3.40)

K24F + F'K2 4 -- D'C'K1 4 +D'C'B'K 34 -K 2 3 CD (3.41)

K3 1A +A'K 3 1 , M-E'G'K4 1 +K 3 3BA- K3 2GE (3.42)

K32F +A'K 32 --E'G'K42 + K3 3BCD - K3 1CD (3.43)

K3 3A + A'K3 3 - -S -E'G'K 4 3 -K 34GE (3.44)

K 34 F +A'K 34 a-E'G'K44 - K3 3CD (3.45)

K4 1A + F'K4 1 '-D'C'K 3 1 + K4 3BA - K42GE (3.46)
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K42F + F'K 42 - -D'C'K32 + K43 BCD - 41CD (3.47)

K4 3 A+F'K 4 3  -D'C'K 3 3 - K4 4 GE (3.48)

K44F + F'K 44 -D'C'K 3 4 - K43 CD (3.49)

D R C'[B'P 2 -P P 3 ' 1R2EM12JM 2 2  (3.50)

K-R '(C'[B'P 5 -P 6 -P 4 -RDM 212E'(EMIE')' I  (3.51)

where

A+B+CKE (3.52)

P1 WK 11M1 2 
+ K12M2 2 

+ K 1 3M3 2 
+ KI4M42 (3.53)

P2 0 K3 1M1 2 + K3 2 M2 2 + K3 3M3 2 
+ K3 4M4 2  (3.54)

P3 = K3 1M14 + K3 2M24 + K3 3M34 + K34M4 4  (3.55)

P4 - KIIM1 1 + K1 2 M2 1 + K1 3 M3 1 + K1 4 M4 1  (3.56)

p5 = K3 1M1 1 + K3 2M2 1 + K33M31 + K3 4M4 1  (3.57)

P6 ' K31M413 + K3 2M2 3 + K3 3M33 + 34N3 (3.58)

ii 12 13 14

M21 M22 M23 M24

M - (3.59)

M31 M32 M133 M134

S41 M42 M43 M/,_

AM + MA' + o =0 (3.60)
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CD 0 0

GE F 0 0

A ' (3.61)

-BA -BCD A CD

o 0 GE F

0 0 0x

0 Ez 0 0
z = (3.62)

0 0 0 0

- ECXo xo}J (3.63)

Z- E{z z (3.64)

Here we present the main steps of the derivation of the above

equations. For .4 -0, we hate

SAX + CDz (3.65)

t = GEX + Fz (3.66)

& " - BAX - BCDz + Aax + CDaz (3.67)

= -GEa + FO (3.68)

The Hamiltonian is given by
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~i

1.,io,.
H X x'x + z'D'RDz + X'E'K'RYE X+ X 'E'K'RDz + Z'DRKE X

+ -, Soa + x'AX + X' CDz+ X' GEX+ z'Fz+X' [-BAX -BCDz+A X +CD z
]

2X x x x z

+ X' [GEax + Faz]  (3.69)
z

Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along the proper definitions of A, A and L

-

4 ..
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CHAPTER 4

DETERMINISTIC SYSTEMS WITH A TIME DELAY IN THE FEEDBACK PATH

4.1, State Feedback Control

In this case, we have a state equation (2.1) along with a control

law (2.8) and a performance index (2.14).

The equations to be solved are summarized as follows:

Kl1 +i 'Kl--+K 9CDA+'D'C'K 2 1  (4.1)

K1 2A +A'K 12 ' A'D'C'K2 2  (4.2)

K2 1 +A'K2 1  K2 2CDA (4.3)

K2 2A+A 'K2 2  -S (4.4)

M+ , MR - (4.5)

AG1 +G 1A CDAM (4.6)

AG2 +G 2A' mG 1A'D'C'+ CDAG[ (4.7)

D -R'1 C' I(D'C'K2 1 -Kll)M+ (D'C'K2 2 -K 1 2)G1

+ (K21M + K22GI)D'C' -K2 1GI -K2 2G2 )M
"  (4.8)

where

A A+CD (4.9)

Q+ D'RD (4.10)

and
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r _- 0 X (1

The above equations are obtained directly by applying the

optimization procedure described in Section 2.1. Here we present the main

steps of the derivation. For 6= O, we have

:k -K x (4.12)

d -1i- CDA.X (4.13)

and

2 fo (x'Qx + a'S )dt (4.14)
0

where A and Q are defined above. The Hamiltonian is given by

H--X'&x+-Ia'sa+. !x+,'o-%'CDjx ('.15)

Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along with the proper definitions of M, G1 and G2.

, 4.2.. Output Feedback Control

Referring to Section 2.1, we have, in this case, a state equation

(2.1) along with a control law (2.9) and a performance index (2.14).

The equations to be solved are summarized as follows:

K1 1A+A'KII "Q+K1 2CDEA+A'E'D'C'K2 1 (4.16)
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K12 A+& 'K1 2 ' A'E'D'C' K22  (4.17)

K2 1 A +.A'K 2 1 -K 2 2 CDEA (4.18)

K2 2A+A'K 2 2 ,-S (4.19)

AM+MA' - -E (4.20)

AG 1 +G A'- CDEAM (4.21)

AG2 +G2 A' -G A E'D'C + CDEAGi (4.22)

1 K21 K(4.22)G2-1

D-R C' \(E'D'C'K 21 - Kl1 )M +(E'D 1C'K 2 2 -K 12 )Gl

+ (l2 1 M+K2 2 G1 )E'D'C' -K 2 GiK 2 2 G2 j E'(EME')-i (4-23)

where

-A + CDE (4.24)

S=Q+E'D'RDE (4.25)

and

Z-Etx x') (4.26)
0 0

The above equations are obtained directly by applying the optimi-

zation procedure described in Section 2.1. Here we present the main steps

of the derivation. For p-0, we have

k - A.x (4.27)

KC - CDEAX (4.28)

and
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J (x'Qx+aO'SO)dt (4.29)
0

where A and Q are defined above. The Hamiltonian is given by

H x +x+ ia'o + X Ax+ U CDEAx(

Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along with the proper definitions of M, G1 and G2.

4.3. Use of Observers with the Dela in the Reconstructed State

Referring to Section 2.1, we have, in this case, a state equation

(2.1), an output equation (2.2) and an observer (2.3) along with a control

law (2.10) and a performance index (2.14).

The equations to be solved are summarized as follows:

K 1 1A+A'K 1 -Q - E'K'RKE-E'G'K 2 1 +E'G'D'C'K 3 1 +K1 3 CDGE -K1 2 GE (4.31)

K1 2 F+AK 1 2 - -E'K'RD -E'G'K 22 +E'G'D'C'K 32 +K 1 3CDF - K1 1CD (4.32)

K1 3 A+A'K 13 - -E'G'K2 3 +E'G'D'C'K 3 3 -K14GE (4.33)

K14 F +A'K 14 - -E'G'K 2 4 +E'G'D'C'K 3 4 -K1 3 CD (4.34)

K2 1 A + F'K 2 1 - -D'RKE- D'C'K1 1 +F'D'C'K 3 1 +K 2 3 CDGE -K2 2GE (4.35)

K2 2F+F'K2 2  "D'RD-D'C'K 2 +F'D'C'K +K2 3 CDF-K 2 1 CD (4.36)

K2 3A+ F'K 2 3 - -D'C'K 1 3 + F'D'C'K 3 3 - K2 4 GE (4.37)

K24F + F'K24 - "D'C'K14 + F'D'C'K34 - K2 3CD (4.38)

K3 1 A + 'K3 1 in"E'G'K 41 -K 32GE +K 3 3CDGE (4.39)
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K32F + A'K 3 2 E 'G 'K42 + K33CDF - K31CD (4.40)

K 33A +A'K 3 3 -- S - E'G' K4 3 - K34GE (4.41)

K34F +A'K 34 ' -E 'G'K4 4 -K3 3CD (4.42)

K4 1A + F'K41 - -D'C'K3 1 + K4 3 CDGE - K4 2Ga (4.43)

K4 2 F+F 'K4 2 i -D'C'K 3 2 +K 4 3CDF - K4 1CD (4.44)

X 4 3A+F'K4 3 -- D'C'K3 3 -K 44GE (4.45)

K44F+F 'K44  -D'C 'K 34 K4 3CD (4.46)

D {R' ChEP2EG+P 3F1 Pj *4 " (4.47)-

K-R' K-[RDM21+C'(P5+P6)]E' (E 1 1 E')' (4.48)

where

Am A + CKE (4.49)

PI K 1 1M12 + K12M2 2 + KI3M3 2 + K1 4M4 2  (4.50)

P2 -K31MII 
+ K32M21 +K 3 3M3 1 + K 34M4 1  (4.51)

P3 - K3 1M1 2 + K32M22 + K33M32 + K34H4 2  (4.52)

4 -"31"14 + K32M2 4 + K3 3M34 + K34M44  (4.53)

P5 " Kj-M1l + K1 2 M2 1 + K1 3 3 1 + K14%1 (4.54)

P6 OK 3 1M1 3 
+ K32M23 + K33M33 +K 34M4 3  (4.55)

lM+MA'l + 1: 0 (4-56)
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SCD 0 0

GE F 0 0= (4.57)

-CDGE -DF A CD

0 0 GE F

Mij,i,j-1,2,3,4 are the partitions of the matrix M as in equation

(3.59) and E is defined by equations (3.62)-(3.64).

Here we present the main steps of the derivation of the above

equations. For p = 0, we have

4 =Ax+ODz (4.58)

= GEx + Fz (4.59)

d -CDGEx-CDFz+Aax +CDaz (4.60)x

&-GEa +Fa (4.61)
z x z

The Hamiltonian is given by

1, 1 1 1 1 ,H-x' Qx+ z'D'RDz+-1x'E'K'RKEx+- xK'RKDz+1 z D RKEx41 Sa

+ X(Ax + CDz)+ X' (GEx + Fz)+"V (-CDGEx- CDFz +AA +CDo )+ "(GE +Fa
x z

(5.80)

Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along with the proper definitions of A, A and .
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!-4. Use of Observers with the Delay in the System Output

Referring to Section 2.1, we have, in this case, a state equation

(2.1), an output equation (2.2) and an observer (2.3) along with a control

law (2.11) and a performance index (2.14).

The equations to be solved are summarized as follows:

KIlA+A'KI E-Q -E'IKRKE -E'G'K2 1 +A'E'KC'K31 +A'E'G
t 

4 1 +K1 4GEA

+ K13CKFA (4.62)

K12F +A'Kl 2 i-E'K'RD -E'G'K 22 +A'E'K'C'K 32 +A'E'G'K 4 2 +K 1 4GECD

+ K13CKECD -K11CD (4.63)

K1 3A +A'Kl3 o -E'G 'K2 3 +A'E'K'C'K 3 3 +A'E 'G'K43- K1 4GE (4.64)

K14F +A'K1 4 ,-E'G'K 2 4 +A'E'K'C'K 34 +A'E'G'K 4 4 -Ki3CD (4.65)

K2 1A+ F'K2 1  -D'RE -D'C'K1 +D'C'E'K'C'K 3 1 +D'C'E'G'K 4 1 +K 4 GE

+ K2 3CKEA - K2 2 GE (4.66)

K22F+F'K22  -D'RD -D'C'K 1 2 +D'C'E'K'C'K 32 +D'C'E'G 4 2 +K2 4GECD

+ K23CKECD - K21CD (4.67)

K2 3A+F1K 2 3 -D'C'K 13 +D'C'E'K'C'K 33 +D'C'E'G'K43 -K 24GE (4.68)

K2 4F+ F'K2 4 - -D'C'K 14 +D'C'E'K'C'K 34 +D'C'E'G'K 4 4 - K2 3CD (4.69)

K3 1A +A'K31 - -E 'G 'K4 1 + K4 3GEA + K3 3CK - K32GE (4.70)

K32F +A'K 32 --E'GO'K42 +K 34GECD +K 33CKECD -K 3 1CD (4.71)
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K3i+ + 'K3 3  -S -E 'G' K4 3 - K34GE (4.72)

K34F + A'K 34 ' K -E'G'K4 4 - K3 3CD (4.73)

K41A + F' K41 = -D'C' K31 + K44GEA + K43 CKE- K42GE (4.74)

K42F + F'K4 2  -'D'C'K32 +K44GECD + K4 3CKECD -K4 1CD (4.75)

K4 3 +F'K 4 3 - -D'C'K33 -K44 0G- (4.76)

K44F + F'K44  -D'C'K34 -K 4 3CD (4.77)

D-R'1  C'[E'K'C'P 2 +E'G'P4 P1.- P3 -RKEM 12} 2  (4.78)

K-R- i C'[P6E'K'C'+E'K'C'P 6+P 2D'C' +E'G'Ps"Ps"7 't

P5 P7 1]-RD'42 j

E ' (M E l') - (4.79)

where

A A+ CXE (4.80)

P1 "K 11M 2 + K1 2M2 2 + K1 3M32 + K,4M4 2  (4.81)

P2 = K3 1M1 2 + K3 2M2 2 + K3 3M32 + K34M4 2  (4.82)

P3 "K3 1M1 4 + K3 2M2 4 + K3 3M34 + K3 4M4 (4.83)

P4 "K4 1M1 2 +K 4 2M2 2 +K 43M3 2 +M4 4 M4 2  (4.84)

P5 KM1 1m1 1 + K12M2 1 + K1 3M3 1 + K,4M4 1  (4.85)

P6 -K 3 1M1 1 
+ K32M2 1 +K 3 3M3 1 +K 34M4 1  (4.86)

P7P K31M13 + K32M23 + K 3P33 +K 34M4 3 (4.87)
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P8 K41M11 + K4 2 M2 1 
+ K4 3 3 1 

+ K44M4 (4.88)

AM+M ' + -0 (4.89)

A CD 0 0

GE F 0 0 ( .oA. (4.90)

-CKEA I -CKECD A I CD
- I

-GEA I -GECD I GE F

Mij, ij-1,2,3,4 are partitions of M as in equation (3.59) and

L is defined by (3.62)- (3.64).

Here we present the main steps of the derivation of the above

equations. For P--0, we have

- Ax + CDz (4.91)

S-GEx +Fz (4.92)

-CKEAx - CKECDz +AOx + CD~ z  (4.93)

&z -GEAx - GECDz + GECx + FaOz (4.94)zI
The Hamiltonian is given by

H . 'Qx + z'D'RDz + -1x'E'K'RKEx + -1x'E'K'RDz + -1z'D'RKEx + -1 aSax

+ V. (Ax + CDz) + %' (G~x + F z) + X ' (-CKF x - CK, CDz + Aax" + CDaz)

xx z
x

+ %I (-GEAx -GECDz +GEcr + Faz (4.95)

Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along with the proper definitions of A, A and Z.
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CHAPTER 5

STOCHASTIC SYSTEMS WITH A TIME DELAY IN THE PLANT

5.1. State Feedback Control

Referring to section 2.2, we have, in this case, a state equation

(2.27) along with a control law (2.4) and a performance index (2.33).

The equations to be solved are summarized as follows:

A'K + KA + Q 0 (5.1)

AP + PA' + 0 (5.2)

P - , (5.3) K K 1 1  (5.4)

LP2 L 22K21 K2 2 ; 54

(KP) (KP)12 7

KP (5.5)
(KP )  (KP)22

D R-[C'[B'(KP)2 1 
- (KP)II - (KP)2 2 ]3 . (5.6)

where

A = A + B + CD (5.7)

Q = Q + D'RD (5.8)

z = Efw I w{1 (5.9)
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A ] (5.10)

~o IS(5.11)

d(5.12)
BE BEB'

The abcve equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the main

steps of the derivation. For p=0, we have

S=x + w1  (5.13)

= - Bx - Bw1  (5.14)

Define

x (5.15) , w= (5.16)
-Bw 1

Hence, we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and r as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43) making use of

the fact that a trace of a block matrix is equal to the sum of traces

of the diagbnal blocks.
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5.2. Output Feedback Control

Referring to section 2.2, we have, in this case, a state

equation (2.27) and an output equation (2.24) along with a control law

(2.26) and a performance index (2.33).

The equations to be solved are summarized as follows:

A'K + KA + Q = 0 (5.17)

AP + PA' + 3- = 0 (5.18)

D = R' [L ] (EP11 ') l (5.19)

-CB'(KP)21 (KP)ii - (KP)2 2)E' (5.20)

where

A = A + B + CDE (5.21)

Q = Q + E'D'RDE (5.22)

= E(wl iw} (5.23)

1'A ,] (5.24) q-(.s

Z 
(5.26)

-BEI  BEI B'

PiJ' Kij and (KP)ij; i,j = 1,2 are partitions of P, K and (KP) as in

equation (5.3) - (5.5).

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the
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main steps of the derivation. For 0, we have

Zx + w1  (5.27)

S a - BEx - B w1  (5.28)

Define

x [ [ (5.29) , w = (5.30)

Hence, we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and E as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43).

S" 5.3. Use of Observers

Referring to section 2.2, we have, in this case, a state

equation (2.27), an output equation (2.24) and an observer (2.25) along

: with a performance index (2.33).

The equations to be solved are summarized as follows

A'K + la + Q 0 (5.31)

!P + A' + Z - 0 (5.32)

P 11 P 12 P 3 P 14

P21 P22  P23  P24

Pm (5.33)

P31 P32  P3 3  P34

P41 P42 P43 P44
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K11 K12 K13 K14

K21 K22 Y-23 K24
K -(5.34)

K31 K3 2  K33 K34

K41 K42 K43 K44

(KP)i (KP) 2  (KP) (KP)

(KP)21 (KP) 2 2  (KP) 2 3  (KP) 2 4
KP = (5.35)

(KP) 31 (KP) 32 (KP) 33 (KP) 34

(KP)41 (KP)4 2  (KP)4 3  (KP)4 4

D = R 1 [C' [B' (KP) 3 2 - (KP)l2 - (KP)34 - (KP)22 - (KP)4 4 ])P}2 1 (5.36)

F K21[[(KP)2 2 +(KP) 4 4 -(KP) 2 1 - -)E 1 (5.37)

where

A A + B + CD-FE (5.38)

E1WlW }  (5.39)

E 2 w2 w (5.40)

A+B CD 0 0

FE A 0 0
A (5.41)

-B(A+B) -BCD A+B CD

0 0 FE A
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Q0 0 0,

0 D'RD 0 0(5.42)

o 0 S 0

0 0 0 0J

0 FE 2 F '0 0

(5.43)

-BE 1  
0 B1B' 0

L 0 0 0 0

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Rere we present the main

steps of the derivation. For - 0, we have

x (A+B)x+CDz+w I  (5.44)

= FEX + Az+Fw2  (5.45)

ax - - B(A+B)x - BCDz + (A+B50x + CD " Bwl (5.46)

a "FEc +A a (5.47)z x z

Define

x

z
x -(5.48)

x

az

I . ..... ... . . .. ,fj in iii
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wi

Fw2
W (5.49)

-Bw 1

0

Hence we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and Z as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43) with one more

equation, similar to equation (2.41), for optimization of F.

i
e_,u..
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CHAPTER 6

STOCHASTIC SYSTEMS WITH A TIME DELAY IN THE FEEDBACK PATH

6.1. State Feedback Control

Referring to section 2.2, we have, in this case, a state

equation (2.23) along with a control law (2.28) and a performance

index (2.33).

The equations to be solved are summarized as follows:

A'K + KA + Q = 0 (6.1)

P + PA' + E = 0 (6.2)

D R 1 (L +L)P-1 (6.3)

LI  C'[(KP) 21A + K - (KP)II- (KP)22 (6.4)

L2  C'[(KP)21D'C' + D'C'(KP)22 -K22CDZ] (6.5)

where

A - A + CD (6.6)

Q = Q + D'RD (6.7)

E I = E 3WWl'} (6.8)

CA A0
A" = (6.9)1(CD6

= (6.10O)
0 S]



ZT DrC

S J.(6.11)

-CD I  CDEID'C'

P.., Kij and (KP)i; i,j =1,2 are partitions of P, K and (KP) as in

equations (5.3)-(5.5).

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the

main steps of the derivation. For u = 0, we have

x Ax +w I  (6.12)

Aa - CDAx - (6.13)

Define x
x , (6.14)

wl

-1
W f(6.15)

-CDw I

Hence, we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and E as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43).
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6.2. Output Feedback Control

Referring to section 2.2, we have, in this case, a state equation

(2.23) and an output equation (2.24) along with a control law (2.29) and a

performance index (2.33).

The equations to be solved are summnarized as follows:

KI + & (6.16)

P+ P'+ E -0(.7

-~~ D -R 1 (L1+ 2) EP1 E) 1  (6.18)

- C'[(KP 21A' + -2': (K-P)ll (KP)22 E'(.9

-2 Cl([(KP)21 E'D'C' +EDC(P (6.20

where

A - A + CDE (6.21)

Q Q + E'D'RDE (6.22)

r nf1 W~ (6.23)

~- (6.24)

:1 (6.25)



43

-EIE'D'C'

(6.26)

'CDEE I  CDEEI E'D'C'

Pi' Kij and (KP)ij; i,jf-1,2 are partitions of P, K and (KP) as in

equations (5.3)-(5.5).

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the main

steps of the derivation. For i = , we have

A "x + w1  (6.27)

0 a - CDEx - CDE wI (6.28)

Define

mFXx L (6.29)

w [- (6.30)
-CDEw I

Hence, we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and 1 as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43).
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6.3. Use of an Observer with a Delay in the Reconstructed State

Referring to section 2.2, we have, here, a state equation (2.23),

an output equation (2.24) and an observer (2.25)along with a control law

(2.31) and a performance index (2.33).

The equations to be solved are summarized as follows:

i'K + IC + 0 (6.31)

AP + PA' + E 0 (6.32)

D -- R C'[ 1 + L2 ] P 22 (6.33)

F - -K2 2[L3 +L 4] (6.34)

L1 - (KP)1 2 + (KP)2 2 + (KP)34 + (KP)4 4 - i(KP)32 + (KP)4 2)A'

- (KP)31 - (KP)3 2 + (KP)4 1 - (KP)4 2JE'F' - (K3 2 +K 4 2 }FL2F' (6.35)

L2  [-(KP)32 - (KP)4 2}D'C' -D'C' (KP)32 + (KP)4 2 )

+ (K 33 +K34+ K43 + K4 43CDFZ2F' (6.36)

L3  [ (KP)2 1 - (KP)22 + (KP)4 3 - (KP)4 4

+ D'C'I-(KP)3 1 + (KP)3 2 - (KP)4 1 + (KP)42}]E' (6.37)

L4 , [-(K 2 3 +K 2 41CD -D'C' ((K4 2 +K 3 2 }

-(K3 3 +K 43 +K34 +K4 4) CD)]FZ2  (6.38)

where
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A - A + CD _ FE (6.39)

zI = Etw Iwj (6.40)

1:2 = E~w2w2} (6.41)

A CD 0 0

FE 0 0 
(6.42)

-CDFE -CDA A CD

-CDFE -CDA FE

Q 0 0 0

0 D'RD 0 0

0 0 S 0 (6.43)

0 0 0 0

0 0 0

0 F2F' -F2F'D'C' -FE2F 'D'C' (6.44)

0 -CDFZ2F' CDFE2 F'D'C' CDFZ2F'D'C'

0 -CDFE2F' CDFZ2F'D'C' CDFZ2F'D'C'

Pij' Kij and (KP)i.; i,j=1,2,3,4 are partitions of P, K and (KP) as in

equations (5.33) - (5.35).
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The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the

main steps of the derivation. For L = 0, we have

= Ax + CDz + w1  (6.45)

z FEx + Az + Fw2  (6.46)

-- CDFEx- CDAz + Aa + CDa - CDFw 2  (6.47)
x x z 2(.7

Sz FEc x z -.Cz CDFw2 (6.48)

Define

x

-- O
z

x =(6.49)

L
w 1

_ Fw2
W (6.50)

-CDFw2

-CDFw2

Hence we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and Z as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43) with one more

equation , similar to equation (2.41), for optimization of F.
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6.4. Use of an Observer with a Delay in the System Output

Referring to section 2.2, we have, in this case, a state

equation (2.23), an output equation (2.30) and an observer (2.25) along

with a performance index (2.33).

The equations to be solved are summarized as follows:

A'K + KA + Q = 0 (6.51)

AP + PA' + = 0 (6.52)

-l -l
D = R LP22 (6.53)

IP22

LI M C'[E'F'(KP)4 2 - (KP)1 2 - (KP)34 - (KP)22 - (KP)44] (6.55)

L 4 - [(KP) 2 2 + (KP) 4 4 - ( -P)21 (KP)43 + (K'?) 4 1A' + (KP) 4 2 D'C'

K4 1 2I]E' (6.56)

L5 = -K4 4 FEZEIE l (6.57)

where
(6.58)

A +CD - FE

-
l K(w jw ) 

(6.59)

(6.60)
2 2 2

i
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A CD 0 0

FE 0 0(6.61)

0 0 A CDi

-FEA -FECD FE

Q 0 0 0

0 D'RD 0 0

(6.62)
0 0 S 0

0 0 0 0

0 0 -E E'F'

0 FZ2F' 0 0

0 0 0 0

0 0 FEIE 'F'

(6.63)

Kij and (KP) i,j =1,2,3,4 are partitions of P, K and KP as in

equations (5.33) - (5.35).

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the

main steps of the derivation. Fir . 0, we have
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x Ax + CDz + w1  (6.64)

= FEx + Az + Fw2  (6.65)

x Aao + CDa z  (6.66)

a "FEAx -FECDz + FEx + Az- FEw (6.67)
z x z I

Define

x- (6.68)

X

Z

w1
Fw 2

_ Fw2

W 2,(6.69)

-FEw 1

Hence we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, Q and Z as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43) with one more

equation , similar to equation (2.41), for optimization of F.
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CHAPTER 7

EXAMPLES

In this chapter we apply our low-sensitivity design scheme to two

practical examples and compare the results to those of the standard IAG

design.

7.1. Continuous Stirred-Tank Reactor

Consider the continuous stirred-tank reactor [25] illustrated in

Figure 7.1. The problem is to control the outlet temperature, T, and the

outlet concentration, CA, at some desired set points, T and CA' in such a

way as to minimize a specified cost function. The manipulated variables are

the feed rate, w, and the heat added or removed, Q. In practice not Q but

the flow rate through a jacket or cooling coils would be manipulated. This

is related to Q through an unsteady state energy balance. For this problem

however it is simpler to assume Q is directly manipulated and that enough

heat transfer is available so that saturation does not occur. If R is

chosen relatively large this will assure that too great a control effort will

not occur. The system is driven by the initial condition given for temperature

and concentration. This is the standard state regulator problem and physically

may be interpreted as a "start-up" problem. A second order reversible reaction

is assumed. The rate of reaction is expressed by

dCA 2
Ra-kC2  (7.1)

Rate A d -

The rate constant, k, may be expressed as a function of temperature using

the Arrhenius expression
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k = k0 exp[--} (7.2)

Substitution of (7.2) into (7.1) yields

Rate =-k exp T (7.3)

Note from (7.3) that the rate of reaction is nonlinear with respect to

temperature, T, and concentration in tank, CA ' The degree of nonlinearity

with respect to T depends on the size of a, which is a function of the

particular reaction. Unsteady state material and energy balances on the

reactor yield

dC
(C -k (7.4)

VP Af A - dt

AHkC2

-(T -T)+ vpQ p =dt (7.5)
VP f vpC pc dt

p p

Linerarization of equations (7.4) and (7.5) about steady state

or set-point conditions yields

dC ( 2C CA +a F Adt vp T 2 +  w (7.6)

g A 2
di 1- 4~C A( HkC A S af

i )---p " + -T2 T+v + w (7.7)

CF andp 2VP _'

CA and T, , are defined as variations about the steady state values,

CA and T, Q, w. w and k are obtained from the steady state versions of

(7.4) and (7.5). Defining T and C as our state variables and Q and w
A

as manipulated variables we may write
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IT (-w -a4HkC A 2  H C

\ P - 2 , - 2 H Td P pp C

dt

C-vp-

F T-T F^
VpCp VPCp

p p
+ (7.8)

0 AF -CA
VP

The following reactor parameters were chosen:

v = Reactor volume = 13.38 ft 3

P = Density = 55 lb/ft
3

Cp = Heat capacity = 1.0 Btu/lb 0F

LH = Heat of reaction = -12,000 Btu

a = 14,000 0R

8 3
ko = Reaction rate constant = 8.33xlO ft /lb mole min

o0

TF = Reactor feed temperature = 100 F

CAF = Reactor feed concentration = 0.4 lb moles/ft
3

T = Reactor temperature = 200 0F

CA = Reactor concentration = 0.21b moles/ft3

Solution for the equilibrium points in (7.4) and (7.5) yields steady state

flow rate, rate constante and heat duty as

0 0.51 ft3 /lb mole min

w - 75.2 lb/min

- 4238. Btu/min
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Using the above parameters our system equation (7.8) becomes

n = X7 + :(7.9)1-0.001 -0.3 07 _00 0.00 1

For the state regulator design of this reactor, we should expect

an undesirable time delay in measuring the system states, i.e. temperature

and concentration. Such a delay might be significant enough to affect the

*system behavior causing deviation of the trajectories from the nominal ones,

corresponding to zero delays. To reduce that effect, our proposed low-

sensitivity design scheme is applied. Consider the case discussed in section

4.1 using the following design parameters

R (7.10)

1  
4](7.11)Q __[0 4010

S = 0 (7.12)

This case corresponds to the standard state regulator problem. The

feedback gain matrix is computed to be

0.996 -1037
D77 (7.13)

10.76 75.7]

Trajectories of this case are plotted for several values of delays as well

as for the nominal zero delay. Trajectories and controls are illustrated in

Figures 7.2-7.5. It is seen that x2 (t) shows unacceptable sensitivity. So,
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we choose S so as to penalize that sensitivity. Now, consider the same

values of R and Q given by equations (7.10) - (7.11) along with the

following values of S

1 0
= 0(7.014)

The feedback gain matrix in this case is

.997 -105. 
(7.15)

10.532 -53.21

The trajectories x1 (t) and x2 (t) of this case are illustrated in Figures

7.6 and 7.7 respectively. The controls u,(t) and u2 (t) are illustrated in

Figures 7.8 and 7.9 respectively. It is seen that trajectories in this case

become closer to each other than they are for the case when S=0 (Figures

7.2 and 7.3). This means that sensitivity to small undesirable delays is

reduced. However, we notice that the trajectories have large overshoots.

To improve this undesirable transient phenomena, we try other values of the

design matrices Q, R and S. A good choice of Q, R and S will result in low

sensitive trajectories having desirable transient phenomena.

For another set of trajectories, consider the following

R -](7.16)
0 1

50 10

Q 400 (7.17)

-Lo0 (7.18)
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The feedback gain matrix in this case is

-0.996 -9
D (7.19)

LO.76 501

Trajectories xl(t) and x2(t) of this case are illustrated in Figures 7.10

and 7.11 respectively.

Now consider R and Q given by equations (7.16) and (7.17) along with

the following value of S E: 0 1
S = (7.20)

L0 5001

The feedback gain matrix in this case is

-0.994 -1077
D (7.21)

LO.48 -49.11'

Trajectories and controls of this case are illustrated in Figures 7.12-7.15.

From the above discussion and associated plots we conclude that

our design scheme is reliable in reducing trajectory sensitivity. This is

because the matrix S has a direct handle on the trajectory sensitivity with

any desired weighting. To get acceptable trajectories, several values of Q,

R and S have been tried. It is seen that the choice of Q, R and S given by

equations (7.17), (7.16) and (7.20) respectively has resulted in a satisfactorily

low sensitivity. However, the transient response is not satisfactory. The

choice given by equations (7.10), (7.11) and (7.14) showed satisfactory

sensitivity as well as satisfactory transient phenomena. So, that would be

the recommended choice for this design.

L:1 r
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128-

68-

48-

3.9 2 5 .9 7.S tG.2 t2.5 15.9 M7. 2.9

Figure 7.2. x (t) for R,Q and S given by equations (7.10), (7.11)

and (7.12)
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?=2

2..-

Figure 7.3. x2 (t) for R,Q and S given by equations (7.10), (7.11)
and (7.12)
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-se-

9 e 29 38 48 so

Figure 7.4. u,(t) for R,Q and S given by equations (7.10), (7.11)

and (7.12)
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22-

42t 93 2s

Figure 7.5. u 2(t) for R,Q and S given by equations (7.10), (7.11)

and (7.12)



61
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49-

9.9 2.5 S.9 7.S 19.9 12.5 15.9 MS. 29.9

Figure 7.6. x 1(t) for R,Q and S given by equations (7.10), (7.11)

and (7.14)



62

00.

an (7.4)-



63

-
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Figure 7.8. u 1(t) for R,Q and S given by equations (7.10), (7.11)

and (7.14)
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708-

I-V

2o2-so4

Figure 7.9. u 2(t) for R,Q and S given by equations (7.10), (7.11)

and (7.14)
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9.2 2.S S.2 7.S 19.9 12.S 15.9 17.S 20.2

Figure 7.10. x 1 (t) for R,Q and S given by equations (7.16), (7.17)

and (7.18)

-1 ow n
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10.3-

a tQa293 48 so

Figure 7.11. x 2(t) for R,Q and S given by equations (7.16), (7.17)
and (7.18)
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Figure 7.12. xl(t ) for R,Q and S given by equations (7.16), (7.17)

and (7.20)
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Oee

Figure 7.13. x 2(t) for R,Q and S given by equations (7.16), (7.17)

and (7.20)
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40 s-

Figure 7.1.4. u 1(t) for R,Q and S given by equations (7.1.6), (7.17)

and (7.20)
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Figure 7.15. u 2(t) for R,Q and S given by equations (7.16), (7.17)

and (7.20)
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7.2. Fl00 Turbofan Engine

Consider the Pratt & Whitney FlOO-PW-100 afterburning turbofan,

a low-bypass- ratio, twin-spool, axial-flow engine. An extensive set of

linear state descriptions of this engine were given by Miller and Hackney [26].

The engine is described by a sixteenth order state model at 20 operating

points. That model is for zero altitude and for a power level angle (PLA) of

67 degrees which is near maximum non-afterburning power. Such an operating

point is chosen because every engine has to pass through this condition as,

for example, -n takeoff. The engine state variables are defined as follows

X 1 Fan Speed, SNFAN (N) - rpm

X = Compressor Speed, SNCOM (N2 )- rpm

X = Compressor Discharge Pressure, Pt3 - psia

X4  = Interturbine Volume Pressure, Pt4.5 - psia

X5 = Augmentor Pressure, Pt7m" psia

X6 - Fan Inside Diameter Discharge Temperature, Tt2 .5h -OR

X = Duct Temperature, Tt2 5 - 0R

X 8 = Compressor Discharge Temperature, Tt3 -0 R

X 9 - Burner Exit Fast Response Temperature, Tt4hi -OR

X10 Burner Exit Slow Response Temperature, Tt4 1o -

X11 Burner Exit Total Temperature, Tt4 -

X12 - Fan Turbine Inlet Fast Response Temperature, Tt4.5hi - OR

X Fan Turbine Inlet Slow Response Temperature, T 4.5 1  R

X14 Fan Turbine Exit Temperature, T t5 0R

X = Duct Exit Temperature, Tt6c- 0R

X - Duct Exit Temperature, Tt7m -OR
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The inputs are defined as follows

U1 = Main Burner Fuel Flow, WFMB - lb/hr

U2 - Nozzle Jet Area, A. - ft2

U3  Inlet Guide Vane Position, CIVV -deg

U4 - High Variable Stator Position, RCVV -deg

U5 - Customer Compressor Bleed Flow, BLC -

The outputs are defined as follows

Y = Engine Net Thrust Level, FN - lb

Y2 = Total Engine Airflow, WFAN- lb/sec

Y = Turbine Inlet Temperature, Tt4 - 0R

Y = Fan Stall Margin, SMAF

Y5 = Compressor Stall Margin, SMHC

The sixteen eigenvalues of the engine were determined to be approximately:

-577, -175, -58, -51, -48, -39, -21.4+jO.9, -18.6, -17.8+j4.2, -5.8+j5,

-3.8, -2, -.68.

A reduced order plant was obtained [26] by eliminating all eigen-

values beyond the frequency range of interest, namely all real parts less

than -17.8. This gave a fifth order model. However since the fan turbine

inlet temperature (FTIT) is a sensed variable, the fast response eigenvalue

of FTIT (-51) was also included. A sixth order reduced engine model was

established with eigenvalues and state variable correspondence as follows

-.68 -T41o, Burner Exit Slow Response (x6)

-2.0 -T4.51o' Fan Turbine Inlet Slow Response (x5)

-4.06 -N2, Compressor Speed (x2 )

L
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-5.4 +4.7i NI, Fan Speed (x1)

-5.4-4.7i P7 Augmentor Pressure (x3)

-51 T4 .hi, Fan Turbine Inlet Fast Response (x4)

All of the sensed variables, except compressor discharge pressure, appear

in the reduced model. Four inputs and four outputs are considered in that

model. The inputs are defined as follows

u= WF, Fuel Flow, PPH

22
u 2 = AJ, exhaust nozzle area, FT2

CIVV, inlet vane position, DEG

= RCVV, compressor vane position, DEG

The outputs are defined as follows

Yl = Nl, fan speed, RPM

Y2 = N2 ' compressor speed, 
RPM

Y3 = P7, augmentor pressure, PSI

y4 = FTIT, fan turbine inlet temperature, *F.

The parameter matrices A, C and E are given [27] as follows

-4.064 3.895 -470.5 7.971 5.294 -3.005

.03718 -2.958 -59.13 .1727 2.08 12.48

A .03389 .0067 -4.442 .0059 .1474 .0985 (7.22)

1.164 -2.646 -331.6 -50.05 -.473 -11.36

.05174 -.1176 -14.74 -2.001 -2.021 -.505

.00184 .0036 -.601 .00008 .0009 -.666
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.86 8 6  -14.51 -96.14 9.246

.9096 -58.46 -1.053 -60.15

-.007994 -79.66 1.2 .3673
C [ (7.23)

5.643 -112.2 -18.23 41.53

.2508 -4.99 -.8106 1.846

L.01 -.3166 -.02915 .07426

1 0 0 0 0 0

0 1 0 0 0 0
Eu (7.24)

0 0 1 0 0 0

0 0 0 1 1 0

'.

Consider the problem of controlling the above reduced sixth order

model, using an output feedback control law so as to minimize a quadratic

performance index. To implement such a feedback control a time delay may be

expected due to the measurement of the output variables. Preliminary

analysis of this example has shown overshoots in the trajectories of xI and

x2 at t =0.005. So, we expect a time delay of this order of magnitude to

have a significant effect on the system trajectories. It has been seen that

delays of the order of 10
-4 result in a significant deviation of the trajec-

tories from the nominal ones. Larger delays result in completely destabiliz-

ing the system. To reduce that effect we apply the design strategy described

in Section 4.2.

Consider the following parameters

R= 104 14 (7.25)

Q (7,&26)
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S =0 (7.27)

The feedback gain matrix is

-6 -5 -4 -7
-.82x0 "  -.26x0 -  .58xl0 .76xl0 -

-.15x10 "2  -.61xlO" 3  .83xl0"  .63x40 4
D= -5-2 (7.28)S.74x10-4  .21xl0"5  -.3x10 -2  .14xlO "4

-.lOxlO
-4  .17xlO

3  -.llxlO -2  .21xlO-4

Two values of i are simulated in addition to the nominal value, i.e. zero.

The state trajectories are illustrated in Figures 7.16-7.21. It is seen that

the first three state trajectories show high sensitivity. So, we choose S

with suitable entries so as to penalize their sensitivities more than the

other three.

Now, consider the same values of R and Q given by equations (7.25)

and (7.26) along with the following value of S:

S = diag[100, 100, 100, 10, 10, 10] (7.29)

The feedback gain matrix in this case is

-.76x10 "6  -.21xlO - 5  .38x10-4  .69xi0 7

-2 - 3 -1 -4-.21x10 -. 68x0 "  .87xi0 .57x0 "

.54x10-4  .llxlO -5  -.36xi0 -2  .11X10 (7.30)

- .20x10-4  .14xl0- 3  -. lOxlO - 2  -.19x10 -4

The state trajectories illustrated in Figures 7.22 -7.27. The nominal

trajectories of this case are illustrated on a wider horizon in Figures

7.28- 7.33 to demonstrate the stability of the system.

In order to obtain more satisfactory sensitivity consider the same

values of R and Q given by equations (7.25) and (7.26) along with the follow-
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ing values of S

S = [1000, 1000, 1000, 100, 100, 100] (7.31)

The feedback gain matrix in this case is

-6-5 -47-. 73x0 -6  -.llxlO .21xlO .60x1O 7

-.23x10-2  -.68x10-3  .88x10-1 .51xlO-4

D -4 (7.32)
.49x0 "  .llxl0 -  -.38x0 -  .1ixiO (.

-. 23x10- 4  . 13x10-3  -. 10xl0 2  -. l(xl0- 4

The state trajectories are illustrated in Figures 7.34- 7.39.

From the plots associated with the above cases, we see that

sensitivity to small time delays is reduced due to our proposed design

strategy. We notice a significant improvement in sensitivity of the first 3

state trajectories that were penalized the most. It is observed in this example

that increasing S is reflected directly on the sensitivity reduction of the

different state trajectories. The choice of S given by equation (7.31) has shown

satisfactory sensiti.vity for all of the six states as well as -,acceptable transient

phenomena. The choice ofQis kept unchanged in each trial of the values of S

because te resulting transient phenomena was acceptable. In fact it is improved

for some trajectories. For example, x2 (t) illustrated in Figure 7.35 shows an

amount of undershoot which is less than that shown in Figure 7.23 which, in turn is

less than the one shown in Figure 7. 17. The .eedback gain matrices given by

equations (7.28), (7.30) and (7.32) have norms which are approximately equal

which means that not much increase in the control effort is needed. So, the

choice of R is unchanged with the different trials of S.
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CHAPTER 8

SUMMRY AND CONCLUSIONS

The work in this thesis is an addition to the study of trajectory

sensitivity of optimal control systems. The parameter with respect to

which sensitivity is studied is a small undesirable time delay that might

cccur in a system designed nominally with zero delays. If the standard

linear regulator problem is used, trajectories may show unsatisfactory sensitivi-

ties to small time delays. This might be handled by adjusting the design para-

meters Q and R. But that approach may not be convenient because of the lack

of a direct theoretical basis for adjusting Q and R. In order to provide a

direct handle on the sensitivity a design strategy is proposed in which a

quadratic performance index which includes a sensitivity measure is minimized.

This sensitivity measure is a quadratic term of the sensitivity functions, de-

fined by (2.13), with some weighting matrix S. Q, R and S can be adjusted

together to get a desirable behavior. Q penalizes state trajectories, R

penalizes the control and S penalizes trajectory sensitivity. Necessary condi-

tions of optimality are derived for all possibilities of delay occurrence.

Existence of an optimal control is investigated and it is proved that it exists

for small values of S. However, this is only a sufficient condition. In

Chapter 7, it has been seen numerically that such a control exists even for

relatively large values of S. Numerical algorithms are presented to solve the

resulting necessary conditions of optimality. Convergence of such algorithms

is investigated. These algorithms are shown to move in a downhill direction.

In other words, the performance index is decreased in each iteration. Analytical

proof for convergence is provided for subiterations within these algorithms.
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The proposed design strategy is applied to a continuous stirred-tank

reactor and a sixth order vcdel of the FI00 turbofan engine. It has been

seen that the numerical algorithms work efficiently. Scveral values of Q, R,

and S are tried. It has been seen that the choice of S with a specific

weighring is reflected directly on the sensitivity of the different state

:rA,,-.cr-s. his direct handle on sensitivity is the main advantage of

-:s ;r lc ! : - c.eme. In both examples suitable values of Q, R and

c-ain trajectories with acceptable transient phenomena

S
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